

Behaviour Fingerprint of the Bitcoin Market

Anqi Liu, Hossein Jahanshahloo, Jing Chen*, Arman Eshraghi

Cardiff University

June 3, 2025

Overview

- The Bitcoin Market
- 2 Brief Literature
- Bitcoin Trader Classification
 - Motivation
 - Bitcoin Address-Level Data
 - K-Means Clustering Algorithm
- 4 Classification Results
 - Five Bitcoin Trader Classes
 - Analysis of Each Trader Class
 - Some Case Studies

A currency, or an investment asset?

- As a cryptocurrency by design, the core function of Bitcoin should be, like any conventional currency, the purchasing power.
 - Broad categories of commodities;
 - Well managed by monetary and fiscal policy;
 - Strong regulations (e.g. taxes, foreign exchange controls, banking).
- However, there have been limited venues and sources that allow people to purchase goods and services using Bitcoin for various reasons.
- Also, the USD/BTC "exchange rate" is much more volatile than foreign exchange rates.

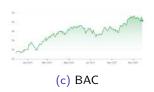
A currency, or an investment asset?

(c)	MXN/USD
-----	---------

	Min.						
USD/BTC	-14.81%	17.18%	0.32%	0.34%	4.22%	-0.13	4.48
GBP/USD	-1.37%	1.26%	0.00%	0.00%	0.44%	-0.19	3.29
MXN/USD	-2.58%	1.74%	0.00%	0.01%	0.67%	-0.30	3.54

Table: Return Statistics

A currency, or an investment asset?



	Min.						
USD/BTC	-14.81%	17.18%	0.32%	0.34%	4.22%	-0.13	4.48
	-12.77%						
BAC	-4.47%	6.06%	0.19%	0.12%	1.60%	0.00	3.38

Table: Return Statistics

Bitcoin as an investment asset?

- Most traders consider and use Bitcoins as a speculative asset.
 - High return;
 - High risk;
 - Fat-tails.
- However, the bitcoin market structure is not designed to make it similar to a stock market.
 - Average 10 minutes to mine a block vs. Microsecond-level response time;
 - 24/7 vs. Market closes overnight.
- Do the Bitcoin traders act just as stock traders?

Addresses in The Bitcoin Market

- A significant increase in the number of addresses since the beginning of 2018 – from 353, 131, 255 addresses to 776, 059, 991 addresses by the end of January 2021.
- Over 91.22% (707, 902, 731 out of 776, 059, 989) addresses have no more than 2 transactions in total; majority of them have been inactive for years.
- The most active address (1HckjUpRGcrrRAtFaa-CAUaGjsPx9oYmLaZ) appears on 28 Oct 2017 (block #492078) and maintains an average 87, 123.88 transactions per month with in total 3,484,955 transactions.

Bitcoin Market Microstructure

The literature grows very fast, in both technology and finance fields. We only briefly state a few literature that inspire us to do this study from the angle of market microstructure and you will see why so while we go along.

- Manahove and Urquhart (2021) found evidences that the Bitcoin market is populated by HFTs alike and substantial trading volumes come from them.
- The intraday price dynamics documented in Eross et al. (2019) have been used to develop trading strategies, e.g.
 - hedging tools (Urquhart and Zhang (2019));
 - portfolio formation (Platanakis and Urquhart (2019, 2020)).
- Non-HFTs Bitcoin trading involves strategies with "currency pairs".
 Duan et al. (2021) analysed various currency-against-Bitcoin price pairs and verified cross-market statistical arbitrage opportunities.

Motivation

- We find the Bitcoin market has many technical advantages in attracting investors, especially non-sophisticated ones. For example, easy entry, low costs, high return potential.
- With expansion of the Bitcoin market since 2017, we observe increasing pricing volatility and high speculative profitability in this innovative "financial asset".
- The lack of regulation and narrow understanding about this innovative system and fast growing trader community also cause irregularity in prices, liquidity and volume.

Motivation

- In the blockchain system, we can trace the "coinpath" of every Bitcoin, which tells the sent/received address-ids of every coin.
- The transparency of Bitcoin market data allows us to get a closer look at the trader behaviors than any other traditional, high-regulated financial markets.
 - A large population of "taster traders" in the Bitcoin market (more than 90%), which is uncommon for the traditional markets.
 - Objective: Whether there are similar trader types or compatible trading behaviours in the Bitcoin market as those in the traditional markets (e.g. fundamental traders, HFTs, market makers in stock markets).
- Further analysis about their impacts to market microstructure, price formation, etc. More importantly, our findings would be useful for regulators to govern the blockchain-based markets (e.g. indicators for price manipulation, cyber-crimes).

Key Findings

- We "learn" and identify five distinctive trader types, which are compared to the conventional trader categorizations: fundamental trader, technical traders, and liquidity providers.
- We analyse group-wide statistics and transaction time series analysis
 of each groups help establish a close comparison to the well-known
 conventional trader behaviours.
- We find interesting cases that clearly shows market making, technical trading, and fundamental investment like strategies by zooming into trading timeline of specific traders in each groups.

Bitcoin Trader Dataset

- Execution data in the bitcoin market includes
 - address ids of sent and received transactions;
 - block time of each transactions;
 - bitcoins sent and received in each transaction.
- We denote the time horizon of the data is from D_s to D_e , in total including
 - M blocks
 - N transactions
 - n addresses
- We create an address-level dataset using the execution data for trader classifications.

Bitcoin Trader Dataset

- $\{N^{(i)}: i = 1, 2, ..., n\}$ the number of transactions for address i.
- $\{M^{(i)}: i = 1, 2, ..., n\}$ the number of blocks that address i had transactions.
- $\{D_j^{(i)}: j=1,2,...,N^{(i)}; i=1,2,...,n\}$ the block date of jth transaction for address i.
- $\{T_j^{(i)}: j=1,2,...,N^{(i)}; i=1,2,...,n\}$ the block time of jth transaction for address i.
- $\{\Lambda_{D,k}^{(i)}: D_s \leq k \leq D_e; i=1,2,...,n\}$ number of transactions of address i in day k.
- $\{\Lambda_{W,k}^{(i)}: D_s \leq k \leq D_e; i = 1, 2, ..., n\}$ number of transactions of address i in week k.
- $\{\Lambda_{M,k}^{(i)}: D_s \leq k \leq D_e; i = 1, 2, ..., n\}$ number of transactions of address i in month k.

Bitcoin Trader Features Summary

	Feature	Equation
1:	Number of transactions per block (in logarithm scale).	$CntTransB_i = rac{N^{(i)}}{M^{(i)}}$
2:	Average number of transactions per day (excluding zero transaction days).	$CntTransD_i = \frac{N^{(i)}}{\sum_k 1_{>0}(\Lambda_{D,k}^{(i)})}$
3:	Average number of transactions per week (excluding zero transaction weeks).	$CntTransW_i = \frac{N^{(i)}}{\sum_k 1_{>0}(\Lambda_{W,k}^{(i)})}$
4:	Relative standard deviation of the num- ber of transactions per week (excluding transaction weeks).	$StdCntTransW_{i} = \frac{\sqrt{\sum_{k} \left(\lambda_{W_{i}}^{(k)}, -CnetronsW_{i}}\right)^{2}}{\sum_{k} 1_{>0}(\lambda_{W_{i}}^{(k)})}$ $CnetTransW_{i}$
5:	Median of transaction time intervals (in weeks).	$MedIntv_i = \frac{\text{Med}_j(\Delta T_j^{(i)})}{60.24 \cdot 7}$
6:	Average transaction time intervals (in weeks).	1117 00-2-1
7:	Relative range of transaction intervals.	$RngIntv_i = \frac{\max_j \Delta T_j^{(i)} - \min_j \Delta T_j^{(i)}}{MeanIntv_i}$
8:	Relative standard deviation of transac- tion intervals.	$\begin{split} RngIntv_i &= \frac{\max_j \Delta T_j^{(i)} - \min_j \Delta T_j^{(i)}}{MeanIntv_i} \\ StdIntv_i &= \frac{\sqrt{\sum_j \left(\Delta T_j^{(i)} - MeanIntv_i\right)^2}}{MeanIntv_i} \end{split}$
9:	Active time ratio.	$ActTime2L_i = 100 \times \frac{D_{N(i)}^{(i)} - D_1^{(i)}}{H^{(i)}}$
LO:	Transaction days to life time ratio.	$TransD2L_i = 100 \times \frac{2L_k L > 0(\Delta_{D,k})}{H(i)}$
11:	Transaction weeks to life time ratio.	$TransW2L_i = 100 \times \frac{\sum_k 1_{>0}(\Lambda_{W,k})}{H^{(i)}/7}$
12:	Transaction months to life time ratio.	$TransM2L_i = 100 \times \frac{\sum_k 1_{>0}(\Lambda_{M,k}^{(1)})}{H^{(1)}/30}$

Table 1: Definition of address-level trading features.

Bitcoin Trader Features Quick Grasp

- Trading frequency features (1- 4): different transaction counts and standard deviation;
- Waiting time features (5-8): different transaction intervals to reflect consistency of their trading habits;
- Active trading ratios features (9-12): different life time ratio to reflect the general activeness in this space.

The K-Means Algorithm

- Unsupervised, K clusters.
- Distance

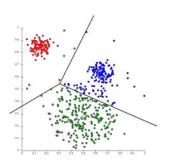
$$\mathcal{D}(X,Y) = \sqrt{\sum_{k=1}^{m} (x_k - y_k)^2},$$

where $(x_1, x_2, ..., x_m)$ and $(y_1, y_2, ..., y_m)$ are the feature vectors of X and Y respectively.

Clustering centroid

$$O_k = \frac{1}{\sum_i \mathbf{1}_{C_k}(i)} \sum_i \mathbf{1}_{C_k}(X_i) X_i, \ k = 1, 2, ..., K$$

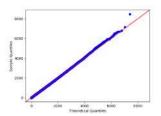
The K-Means Algorithm



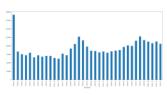
```
Algorithm 1: K-means clustering algorithm
   Data: X = \{X_i : i = 1, 2, ..., n\}
   Result: C = \{C_k : k = 1, 2, ..., K\}
   Input: The number of classes K, the termination condition
   Output: \{1_{C_k}(i) : i = 1, 2, ..., n \text{ and } k = 1, 2, ..., K\}
                           // initialize a large distance between centroids
z for i \leftarrow 1 to n by 1 do
     I \leftarrow RandInt(1, K)
                                                     // randwelr select a class
   /* iterate over all classes
 s for k \leftarrow 1 to K by 1 do
   /* loop until the centroids of newly developed clusters stay the same
   while c \ge \epsilon do
       for i \leftarrow 1 to n by 1 do
           /* iterate over all observations
           \hat{I} = \arg \min_{k} \mathcal{D}(X_k, O_k)
                                                 // update to the closest class
14
       /* update all class centroids
                                                                                  ./
       for k +- 1 to N by 1 do
        \tilde{Q}_k = \frac{1}{Y - 1_{C_k}(i)} \sum_i \mathbf{1}_{C_k}(i) X_i
       e = D(O_k, \tilde{O}_k)
                                     // update the distance between centroids
20
       Q = \tilde{Q}
21
                                                              // update controlds
22
za end
```

Data

- Address-level dataset: all accounts joined the Bitcoin market before 2021-01-31 and traded during 2018-01-01 to 2021-01-31.
- Exclude the addresses that had less than 3 trades or shorter than 1 minute active time or traded in the market in less than 3 different weeks.
- 6, 108, 128 addresses are used in the classification experiment.



(a) QQ plot: block arrivals vs. exponential distribution (intensity=9.33 minutes).



(b) New trader arrival.

- Class #1 "taster traders";
- Class #2 "fundamental traders";
- Class #3 "technical traders";
- Class #4 "market makers";
- Class #5 "high-frequency trader".

- 5, 215, 499 (out of 6, 108, 128) addresses have the same classification throughout all runs.
- ullet Take the consistent clustering results \longrightarrow centroids.

Class	Num. of	CntTransB	CntTransD	CntTransW	StdTransW
	addresses				
1	2,089,694	1.07	2.00	4.28	0.53
2	2, 101, 244	1.04	1.71	3.01	0.49
3	1,023,726	1.05	1.85	4.66	0.57
4	566	2.08	70.38	389.43	0.82
5	269	13.95	560.35	2569.68	0.85

Table: Trading frequency features

- 5, 215, 499 (out of 6, 108, 128) addresses have the same classification throughout all runs.
- ullet Take the consistent clustering results \longrightarrow centroids.

Class	Num. of	MedIntv	MeanIntv	RngIntv	StdIntv
	addresses	(days)	(days)		
1	2,089,694	1.57	7.27	8.92	1.87
2	2, 101, 244	3.21	22.36	13.72	2.33
3	1,023,726	2.24	4.86	13.04	1.74
4	566	0.02	0.14	1893.16	27.01
5	269	0.01	0.11	366.16	8.89

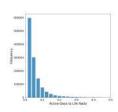
Table: Waiting time features

- 5, 215, 499 (out of 6, 108, 128) addresses have the same classification throughout all runs.
- ullet Take the consistent clustering results \longrightarrow centroids.

Class	Num. of	ActTime2L	TransD2L	TransW2L	TransM2L
	addresses	(%)	(%)	(%)	(%)
1	2,089,694	20.07	3.07	10.24	19.38
2	2, 101, 244	72.65	4.63	17.84	39.56
3	1,023,726	88.37	21.24	61.90	88.53
4	566	72.35	34.13	40.68	48.11
5	269	31.24	24.61	28.04	33.05

Table: Active trading features

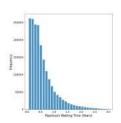
Fundamental traders trading specs.



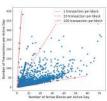
(a) Hist. of active days %.



(c) Active blocks vs. Active days.

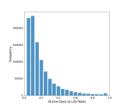


(b) Hist. of maximum waiting time interval.

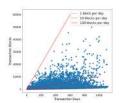


(d) Number of transactions vs. Active blocks.

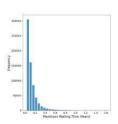
Technical traders trading specs.



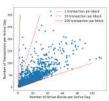
(a) Hist. of active days %.



(c) Active blocks vs. Active days.

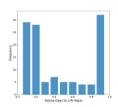


(b) Hist. of maximum waiting time interval.

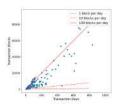


(d) Number of transactions vs. Active blocks.

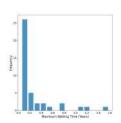
Market makers trading specs.



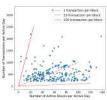
(a) Hist. of active days %.



(c) Active blocks vs. Active days.

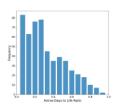


(b) Hist. of maximum waiting time interval.

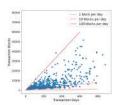


(d) Number of transactions vs. Active blocks.

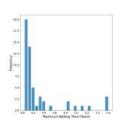
High-frequency traders trading specs.



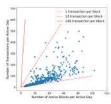
(a) Hist. of active days %.



(c) Active blocks vs. Active days.

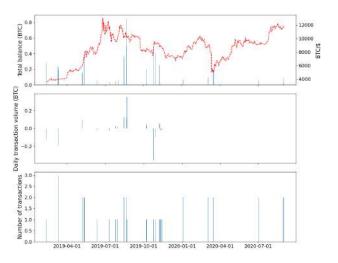


(b) Hist. of maximum waiting time interval.



(d) Number of transactions vs. Active blocks.

A case of fundamental traders (in Class #2)



 $\label{prop:sprbr} \textbf{Figure: } 1 B Ksv1JR Kgap6ySprBrNDAiWS3wxz9EzJn$

A case of technical traders (in Class #3)

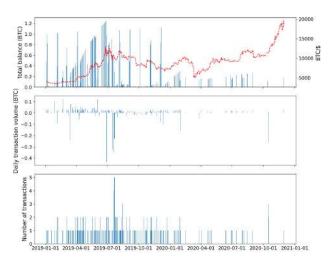


Figure: 3LxwRbT1nAWWdRK8CgNWTZqghubs6vftXg

A case of market makers (in Class #4)

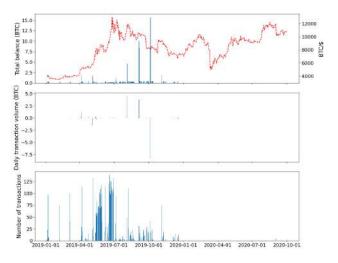


Figure: 138hQapNmwkRHtC6DTb7H4tQbjMmj49ej2

A case of high-frequency traders (in Class #5)

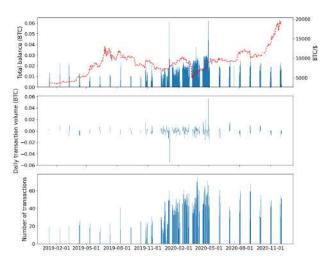


Figure: 3K1kmJbfHm135wfpxgcNEYRtvXjZ2AT7y8

Extended Trader Classification using SVM

Figure: SVM Trader Classification

35 / 36

THANK YOU!!!